Fundamental bounds on the interconnect complexity of decoder
implementations

Pulkit Grover and Anant Sahai
{pulkit, sahai} @eecs.berkeley.edu

Abstract— Modern codes are often designed to attain the min-
imum possible error probability under a blocklength constraint.
For instance, sparse-graph codes are often designed aiming for
large girth in order to reduce the error-probability. In this
paper, we show that such an improved performance comes at a
fundamental cost: longer interconnects (wires) in the decoding
circuit. Recent empirical results show why shorter interconnects
are important: decoders with short interconnects can have
significantly smaller power consumption because significant
power is burned in wires, and this power is proportional to
the length of the wire.

We derive two bounds to demonstrate this cost: the first
bound shows that for a belief-propagation decoder for a linear
sparse-graph code, the wire-length must increase exponentially
in the girth of the code. While this bound depends on the code
construction, our second bound is fundamental: we derive lower
bounds on the wire-length for decoding any code (even if it is
nonlinear) and any message-passing decoding algorithm given
the performance and the number of clock-cycles at the decoder.
Under simplifying assumptions, we discuss novel small-girth
code constructions that provide upper-bounds on the required
interconnect-length.

I. INTRODUCTION

passing through

channel
Models:
AWGN
implementation BI-AWGN
(encoding/decoding)| BSC
Models: e

?7?

Fig. 1. A code’s interfaces with the physical world. We need models for
implementation just as we have models for channels.

Fig. 1 illustrates the disconnect that exists today between
the theory community that designs codes, and the experi-
mental community that implements them. A code interfaces
to the physical world not only when it passes through a
channel, but also when it is encoded and decoded. The theory
community focuses almost exclusively on the first interface
by designing codes that minimize the channel input power
for given constraints on the channel bandwidth. The purpose
of this paper is to show that the code design fundamentally
affects the power consumption, complexity, and the area
of implementation. Further, just as there are fundamental
limits to the requirements on bandwidth and power of the
channel that depend on the rate and error probability [1],
there are fundamental limits on power, complexity, and area
of implementation that also depend on the rate and error

probability. Code design and implementation thus should not
be done in isolation.

o&——N @
Y
TR [
i)
e
wfg_d' (x)
A\

—._

(B))—T

Abstraction of decoder implementation

y

Tanner graph of a code

Fig. 2. Tanner graph of an LDPC code and a model of its decoder’s
implementation.

The focus of this paper is on the wiring complexity of
the decoder implementation. Where are these wires on a
decoder? Fig. 2 shows an abstraction for a possible decoder
implementation of an LDPC code. In this example, the
wires connect the variable nodes to the check nodes along
the edges in the Tanner graph of the code. The variable
nodes are placed on the two sides of the check nodes in
order to minimize wiring complexity. Why do wires matter?
Typically, longer wires consume more power, area, and are
more complex to route than shorter wires (e.g. [2] and the
references therein).

In Section III, we first show (Theorem 1) that for a fully-
parallel implementation of belief-propagation decoding for
any sparse-graph code, the length of the longest interconnect
must increase exponentially in the girth of the code. While
this suggests that the implementation complexity may depend
on the desired performance, this result is extremely limited.
Large girth is a property that is merely sufficient, but
hardly necessary!, for good code performance. The decoding
architecture may also not be fully parallel, and there is no
reason to believe that the decoding algorithm would always
be belief-propagation either. Often, nodes do double-duty by
acting as different nodes in the Tanner graph in different
clock-cycles [4], which also has the potential to reduce
interconnect-lengths. Can one therefore sacrifice on large
girth and fully parallel decoding to have codes/decoders with
reduced interconnect-lengths and yet good performance? Our
second bound (Theorem 2) rules out this possibility as well:

IFor instance, in [3] the authors mention that there is no proof that cycles
in the decoding graph only degrade the performance.

we show that for any code (which may not even be a sparse-
graph code) and any decoding algorithm, the product of
the length of the longest interconnect at the decoder and
the number of clock-cycles must diverge to infinity as the
error probability converges to zero or as the rate approaches
capacity.

What does this imply for code design? First, it changes
the code design problem from merely attaining the desired
performance (i.e., rate and error probability) to introducing
the goal of minimizing wire-lengths while attaining the
performance objectives. Second, it shows how overdesigning
can hurt. It is well known that the required blocklength,
and hence the required area of the decoding chip, increases
with improved performance. Even so, sparse-graph codes
are often designed aiming for large girth in order to re-
duce the error-probability. This is because the on-chip area
depends primarily on the blocklength, and the available
area might be large enough that a code of larger girth
can be accommodated. However, even when enough area
is available, the code/decoder should be designed for the
required performance, and no better, because an improved
performance will require larger wire-lengths.

Interconnect complexity has been acknowledged as a
problem in implementing decoders. Whereas earlier litera-
ture focused on reducing interconnect complexity for given
LDPC codes (e.g. [5]-[7]), the works of Mansour and
Shanbhag [8] and Thorpe [9] were the first to propose design-
ing codes to reduce interconnect complexity. While Mansour
and Shanbhag use quasi-cyclic LDPC constructions (first
proposed by Gallager [10, Appendix C]), Thorpe proposes
construction of protograph-based LDPC codes. These codes
are nicely structured so that wiring is easy. While these codes
have been used extensively in standards (such as 10Gbase-
T [4]), there has been little exploration of the goodness of the
interconnect length for their decoder implementations. This
is where our bounds can help.

How far are our bounds from what is achievable? Be-
cause the constructions of [8], [9] are algorithmic, it is
hard to obtain upper bounds on attainable wire-lengths for
them. Constructing codes with small interconnect-lengths in
general is an intriguing graph-theoretic problem. For the
time-being, we side-step the real problem of minimizing
interconnect-lengths by approximating interconnect-lengths
with the blocklength of the code. Using this simplification,
in Section IV we provide novel constructions of arbitrary
girth. The resulting upper bound on wire-length increases
exponentially in the girth, though the exponent is larger than
that for the lower bound. The upper bound also serves to
bring out one of the deficiencies of our model: because the
wiring complexity introduced by intersecting interconnects
is not accounted for, the bounds may be unrealistically opti-
mistic. Perhaps results from existing VLSI theory (e.g. [11])
or the theory of embedding graphs into Euclidean spaces [12,
Ch. 13] can help rectify this problem.

II. NOTATION, DEFINITIONS, AND SYSTEM MODEL

Notation: A (d,,d.)-LDPC code is a regular LDPC
code [3], [13] where the degree of each variable node is

d, and the degree of each check node is d.. The decoded
average bit-error probability is denoted by (P.). The length
of the longest interconnect is denoted by W,,,.. The code
rate is denoted by R, and the channel capacity by C. The
girth of a graph is defined as the length of the shortest cycle
in the graph. A regular graph (i.e., a graph where all nodes
have the same degree) is denoted by G™*9(r, g), where r is
the degree of each node. A regular bi-partite graph is denoted
by G%(d,,d., g) where d, is the left-node degree, and d_ is
the right-node degree. The order of a graph is the number
of nodes in the graph.

Channel model: The channel is assumed to be a
memoryless Binary Symmetric Channel with channel flip-
probability p, denoted by BSC(p). A test channel BSC(g)
with flip-probability g > p is used in our lower bounds.

@ Channel output nodes
O Message nodes
@ Helper nodes

s 2

N—C
-

\
| o J
T

Fig. 3. The VLSI model of a decoder [14] (this model is based on
Thompson’s VLSI model of computation [15], [16]).

Decoding implementation model: As shown in Fig. 3, the
decoder is modeled by a collection of computational nodes
that are connected using interconnects [14]. The nodes are
either (a) ‘message’ nodes that store the decoded bits after
decoding, (b) ‘channel output’ nodes that store the channel
outputs, (c) ‘helper’ nodes that act as intermediaries of
processing by improving connectivity, or (d) any combination
of (a), (b), and (c). In [14], we used limitations on wiring
density to assume limited connectivity of each computational
node. Here we do not make that assumption. Instead, the
wiring complexity is reflected directly in the interconnect-
length.

For convenience, we assume that all computational nodes
are circular? and occupy an area of at least A, qe units.
This area depends on the complexity of the message-passing
decoding algorithm (for instance, the size of each message),
the technology used (for instance, 65 nm CMOS), and even
the length of the interconnects (as suggested above, the
size of the driving transistors must increase with increase
in interconnect length). For simplicity, in this paper we
assume that this area is fixed. For our fundamental bound
(Theorem 2), we assume that A,,q. is merely the area
occupied by a memory-cell (i.e., a channel output node).
Yet we assume that these memory cells are connected using
interconnects as illustrated in Fig. 3.

Modeling length of an interconnect: The length of the
interconnect joining two computational nodes is defined as
the distance between the centers of the two nodes (see Fig. 4).

2 Any other model can be used in its place with a minor tweaking of our
results.

Computational node

Euclidean wiring: The
length of a wire is the
Euclidean distance

The computational npdes between two nodes

are all assumed t
occupy the same aftea

possible
interconnects—
Manhattan wiring:
The wire-length is the
Manhattan distance
between two nodes

Fig. 4. Our model for an interconnect connecting two computational
nodes. The interconnect-length on an actual implementation is always larger,
usually because the wiring is Manhattan wiring. For more realistic upper
bound calculations, we use Manhattan wiring in the upper bound. For
broader applicability, the lower bound is allowed to have the any wiring.

The example in Fig. 3 shows that the actual length of the
interconnect is always longer. This can happen due to many
reasons: the wiring is usually performed in a “Manhattan
wiring” pattern® (i.e., the interconnects are aligned in a
grid), the interconnects that cross each other have to cross
by moving into different metal layers (thereby increasing
their length), interconnects cannot cross nodes, etc. To better
approximate the interconnect length in the upper bound, we
will use the Manhattan distance in order to obtain those
bounds.

III. LOWER BOUNDS ON THE INTERCONNECT-LENGTH
A. Lower bounds on the interconnect-length given the girth
of a regular LDPC code

If a sparse-graph code of girth g is decoded using belief-
propagation decoding, then every decoding neighborhood is
a tree for at least § — 1 iterations. The belief-propagation
decoding algorithm is equivalent to the optimal (maximum-
likelihood) decoding algorithm on a decoding neighborhood
that is a tree*. The following theorem shows that an increased
girth must come at the cost of an increased interconnect
length.

Theorem 1: For decoding a regular (d,, d.)-LDPC code
of girth g using belief-propagation decoding in a fully-
parallel implementation, a lower bound on the length of the
longest interconnect for a two-dimensional chip’ is given by:

\/Anode
Wmal’(dvvdmg) > m (1 +¢(dv7dcyg) - 121)
g1

Zd (dy—D)l(d, —)= @)
The bound is also a lower bound on the longest interconnect

involved in each decoding neighborhood.
Proof: See Appendix I. []

where ¢(dy, d., g)

3With Manhattan wiring, the interconnect-length is better approximated
by L1 distance between two points.

4Even so, the maximum-likelihood (ML) decoding algorithm over the
entire block can outperform BP decoding over trees. This is because the
ML decoding algorithm performs optimal decoding over the entire block,
not just the decoding neighborhood. The question of when the performance
of ML decoding and BP decoding can be made the same was addressed
recently in [17].

5The bound can easily be generalized to three dimensions.

B. Fundamental lower bounds on the interconnect-length
given the code performance for any code

In this section, we provide bounds that are valid for
any code (even nonlinear), decoding architecture (even a
not-fully-parallel implementation), and any message-passing
decoding algorithm. In order to derive bounds for implemen-
tations that are not fully parallel, the area A,,,4. is assumed
to be area of just the memory cells that store the channel
outputs (and hence potentially much smaller than the area of
the computational nodes in Theorem 1). The bounds derived
here use the observation that each channel output needs to
be stored in a different memory-cell.

The bounds are stated as lower bounds on the product
of the length of the longest interconnect W,,,, and the
number of clock-cycles ¢ for which the decoding is run.
Notice that the decoding power increases if any one of these
two quantities is increased. The designer therefore needs
to reduce both of them in order to minimize the power
consumption. The following theorem shows that the two
cannot be simultaneously small. The bound is really a bound
on the required communication complexity [18] for decoding
to a certain error-probability for a given rate.

Theorem 2: For a given BSC(p) channel and ¢ time-steps
of the message-passing decoding algorithm, the following
bound holds on W, the length of the longest interconnect:

2

Ano e
Lnode > n(<Pe>7 R)Anodea (3)

™

where n((P.), R) is lower bounded by the following relation:

by Busc(9))) gl <p<1 - g))eﬁ,
2 g(1—p)
4
where hy(-) is the binary entropy function; D(g|lp) =
glog, (9) (1 - g)log, (=2

and Opse(g) = 1 — Cﬁthg),

1 2 —
\/K@) tog (h;l(ébsxg)))’ where K(g) =
D(g+nllg)

L(R)<g<i

bsc

is the KL-divergence;
where Chpse(g) = 1 —

hy(g); and € =

1nf0<77<1fg

Proof: Fig. 5 shows the area covered using a

\._ Colinear nodes demonstrating the
maximum distance that can be
reached from the central node

nodes
unreachable in
3 time-steps =X

Fig. 5. An illustration of the bounding argument used in the proof of
Theorem 1 and Theorem 2. The total area covered using interconnects is at

2
most 7 (thwj + @) .

maximum interconnect-length of W,,,, in three time-
steps. In general, the area covered is lower bounded by

7| tWoas + % . This area should exceed the area

covered by just the memory-cells, which is the product of
the neighborhood size (n({P.), R)) and the area of each
memory-cell (A,,,q4.). This yields (3). Equation (4) is taken
from Theorem 1 of [19]. A lower bound on n((P.), R) can
be obtained by taking logarithms on both sides of (4) and
solving the resulting quadratic equation in n. The best such
lower bound can be found by optimizing over the allowed
values of g. []

o _1
Corollary 1: 7(tWnaz)? 2 Anodef l(gg,(_ig«g)

Proof: Follows directly from an approximation intro-
duced in [19]. |
Although the bound is provided for the BSC, similar
bounds can be derived for the AWGN channel, the binary
erasure channel, the Binary-Input AWGN channel, etc [19].

IV. UPPER BOUNDS ON THE REQUIRED INTERCONNECT
LENGTH

Longest wire in our model
(with Mahattan wiring)

Fig. 6. Our upper bound on the interconnect-length arranges all the nodes
in a grid configuration, and connects them using the shortest interconnect
connecting two nodes (under Manhattan wiring). The longest interconnect
in this configuration is one that connects the farthest nodes. If the number
of nodes is not a perfect square, we take the smallest square larger than the
number of nodes.

In this section we provide an extremely simple approach
to construct LDPC codes to provide upper bounds on the
required interconnect-length in our model of the decoder im-
plementation. Obtaining complexity of wiring is in general a
hard problem [11]. Instead, we obtain bounds on interconnect
length within our simplified model (see Fig. 6).

We first provide an algorithm to obtain a bi-regular bi-
partite graph G%(d,,d., geoqe) Of girth g.oqe from a reg-
ular “skeleton” graph G"®9(r, gskeicton) Of m nodes and
girth gsketeton With 7 = d,d.. The term “skeleton” is
used to describe G"%Y because the graph only provides the
basic structure of the final bipartite graph G®. We will
then show that the girth of the resulting bi-partite graph
GY(dy,de, geoqe) is at least as much as the girth of the
skeleton graph G"¢9(r, gskeicton)-

We call each node in the skeleton graph G"%9 a “super-
node” A “cell-graph” is a (d,, d.)-regular bi-partite graph
with d, + d. nodes (i.e., the minimum possible nodes for a
(dy,d.) regular graph). Each super-node is embedded (see
Fig. 7) with a cell-graph. This embedding can be thought of

as mere placement of a cell-graph inside each supernode of
the skeleton graph. On this structure, we run the following
pseudocode:

~ \ /
~ e \ / -
~ / rd
—_— - 1:'___— ~ ,/
///7'[\ So E____._
s /N S o So
Pl // | N | ~.
; 1 \ 1 , \\
| \ | , P
~ \ ! / 7 \
~_ N7 \
SoN -, \
<J¢
——— - \
~
AN —— Cell-graph
- /1 ~ . .
A N v (bi-partite)
PR \
1 | \ \
\ A Yy /
N // A //
\ - \ -
AN _Il Al AN \\\L i
ESRY s ~ -
e . R ¥ S
TS | / 27 AN~
- ~ - A ~
e / 4 \
P /N S o oy, _- ‘I| N SO
P | \\ \\\ | , /// ; h N
/ ! \ ~ "(z’/ ’ Ill \
| -——— -7 7 ;)
//)]'\l\\\“ -~ L
,/ // | \\ SO N e
r'd
PN Supernodes
/ ! \
1
Fig. 7. The skeleton graph. In our construction, the skeleton graph is a

regular graph of girth gsxeieton- Each node in this graph is embedded with
a cell-graph (shown inset). To construct the code, each of the cell-graphs is
linked via an edge-exchange procedure shown in Fig. 8.

’ Supernode

1,\(:’/—

Edges to be
exchanged

@ " ©

Fig. 8. The figure demonstrates how the edge exchange process is carried
out. (a) Two super nodes that are neighbors, and have not yet exchanged
an edge, are chosen. The indicated edges in the (remnant) cell graphs are
chosen for the exchange (any choice of edges will work). (b) The indicated
edges are exchanged — the variable node of one is connected to the check
node of the other.

1) Initiate ¢ = 1.

2) While 7 < %, do steps 3-5.

3) Pick two neighboring supernodes that have uncon-
nected cell-graphs.

4) Pick one edge each from the two cell-graphs that
have not been exchanged. Exchange these edges, i.e.,
connect the variable node from one supernode to the
check node in the other supernode (for both pair of
nodes).

5) i=i+l.

Claim 1: When the algorithm finishes, the resulting graph
is a bi-regular bipartite graph that has graph at least g.oqe =
Jskeleton T 1if Gskeleton is Odd’ and YJcode = Yskeleton if
Gskeleton is even.

Proof: The graph is bi-regular bipartite at each stage in
the process. The girth can be smaller than gsgeieton Only if
some super-node has any remaining internal edges when the
algorithm finishes. If that is the case, it has not exchanged an
edge with at least one neighboring super-node. Pick one such
neighboring super-node. Since the skeleton graph is regular,
this would mean that this neighboring super-node also has
at least one internal edge remaining. Thus the algorithm has
not finished, and we arrive at a contradiction.

Because there are no internal edges, the girth of the
resulting bipartite graph is at least gsxeieton, the girth of the
skeleton graph. Further, if gsgeieton 1S 0dd, the the girth of
the bipartite graph is at least gsieieton + 1, because a bipartite
graph can only have even girth. This completes the proof. B

Claim 2: The number of nodes in the code-construction
above is upper bounded by

0(dy, de, Geode) < 2(dy + do)dydeqioeet==% (5)

where a = 4,11/4,7/2,13/4 for geoqe = 0,1,2,3 mod 4
respectively, and ¢ < 2d,d. + 1 is the smallest prime power
larger than d,d..
Proof: We use the following theorem from [20].
Theorem 3 (Theorem A in [20]): Let » > 2 and let
g > 5, then the following upper bound holds on the order
of the smallest regular graph of degree r and girth g:

v(r,g) < 2rgi9c 6)

where @ = 4,11/4,7/2,13/4 for ¢ = 0,1,2,3 mod 4
respectively, and ¢ < 2r + 1 is the smallest prime power
larger than r.
Using r = d,d. in Theorem 3, we get a bound of
2dvdcq%9“’d“’“ on the number of super-nodes in our bi-
partite graph. Since each super-node contains d,, + d. nodes,
we get the bound of Claim 2. []
Claim 3: In our model of decoder implementation, an
upper bound on the interconnect-length for the decoding
implementation (using Manhattan wiring) of the above code
construction is given by:

Ano e
Wmaa: S 4 (\/2(dv + dc)dvdcqggcode*a + 1) d ’

™
(7

where ¢ < 2d,d. + 1.

Proof: The proof follows immediately from the obser-
vation that the nodes can be arranged in the grid arrangement
of Fig. 6. The technical detail where the number of nodes
is not a perfect square can be dealt with easily. If IV is the
total number of nodes, a square larger than N is smaller
than (v/N +1)2. Each side of the grid therefore has at most
VN + 1 nodes. []
Comparing with the lower bounds of Theorem 1, W4,
for our construction increases exponentially in girth with an
exponent of g Jeode- On the other hand, the lower bound has
an exponent of § geode-

Claim 4: An upper bound on the wire-length as a func-
tion of the achieved error-probability is given by:

Winaz < 2V2 (5 <ln <<P1>>)" + 1> W (8)

where 6 and 7 are positive constants that depend on the
chosen degrees d,, d. of the code (as long as d,, > 2) and
the chosen message-passing decoding algorithm.

Proof: 1t is shown in [21] that if the density-evolution
analysis is valid for an LDPC code, the bit-error probability
of decays double-exponentially with the number of iterations,
I, ie., (P,) < exp(—ae!) for some positive a and ~y. The
density-evolution analysis is exact for regular LDPC codes
as long as all the decoding neighborhoods are trees® [3,
Section III] [22], which is satisfied when the girth of the
code-graph exceeds twice the number of iterations. Thus,
(P,) < exp(—aeY9ecde). The required girth is therefore
upper bounded by:

1 1 1
Jeode < ; In (a In <<-Pe>)> . &)

Substituting in (7), we establish the claim. [|
Observe that the obtained product of the number of iterations
(§ — 1) and the wire-length W,,,, is bounded above by

¢
0] ((m (ﬁ)) for some ¢ > 0 which is similar to the

behavior of the lower bound in Theorem 2. However, because
regular LDPC constructions are bounded away from capacity,
these codes operate at a farther gap from capacity than that
predicted by Theorem 2, thus incurring a cost in transmit
power.

These upper bounds are unrealistic in part because we
assume that there is no increase in length due to interconnects
crossing interconnects or interconnects crossing nodes. As
we noted in Section II, this is never the case in reality.
How far are more realistic upper bounds? It is hard to
say without estimating the wiring-complexity using a more
realistic model, perhaps closer to the model explored in [11].
A question still remains: what is the best way to embed these
large graphs (see, e.g., [23]) in a smaller dimensional space?

General constructions of bi-partite graphs of any specified
girth have appeared previously in [24]. However, our bounds
on the required number of nodes (Claim 2) are tighter (than
those in [24, Theorem E]) and have a further advantage that
any improvement in design of regular graphs directly yields
improvements in design of bi-partite graphs. Constructions
of regular graphs are better studied than bi-partite construc-
tions [25] and therefore might offer good bounds for specific
girths as well.

V. DISCUSSIONS AND CONCLUSIONS

Based on ideas in this paper, how should we design
code/decoder in order to minimize the power consumption
in order to attain a specified performance? In our earlier
work [14], [19], we noted that an increase in transmit power
can reduce the decoding power by reducing the number of
iterations required at the decoder. Here, we show that if we
are indeed operating for a smaller number of iterations, the
energy per-iteration can also be lowered because we can

6An ensemble of codes is considered in [3] only in order to arrive at
code constructions that have large girth, and to show that almost all code
constructions of given degrees behave nearly the same. However, if the
decoding neighborhood has no cycles and the code is regular, then the
prediction of density-evolution is exact (as also noted in [22]).

use code constructions that reduce interconnect lengths. In a
good design, the designer will optimize over the interconnect
length, the number of iterations, and the transmit power in
order to minimize the system-level power consumption.

ACKNOWLEDGMENTS

We thank Karthik Ganesan, Jan Rabaey and Salim El
Rouayheb for helpful discussions, and Vineet Abhishek for
a careful read of the paper. Support of NSF grant CCF-
0917212 is also acknowledged.

APPENDIX I
LOWER BOUND BASED ON CODE-GIRTH
dy
9 _ 1 levels ’
2

/A/R/I\/#VR/R/M\%\/f\/l\/l\/l\/l\/l\/l&/li/l

/‘l\/]\

/_,

Fig. 9. The decoding neighborhood of a bit-node for a regular (3,4)-
LDPC code. The check nodes are shaded. The girth of the code is 12. Two
paths diverging from the root node converge at a node at 2 = 6th level.
Because there are no cycles until level % — 1, the number of nodes in the

neighborhood at g — 1 time steps is the maximum possible for the given

left and right degrees.

Because the graph is bipartite, g is even. Choose a node
that participates in one of the cycles of length g. Call it node
B. Expand the graph with node B as the root node until level
4. Atlevel £, there will be at least one node that is connected
to at least two nodes at level § — 1. But the sub-graph until
level § — 1 is a tree. The number of nodes until level £ — 1
is lower bounded by:

4.1

U (dy, de, g) Z dy(d

Thus the neighborhood of node B explodes exponentially
in the code girth. What about the neighborhood area-on-chip?
If the longest interconnect has length W, ..., the maximum
area that the neighborhood can cover is given by the area

Dlgl@, - nl=1. a0

of the circle: 72, where r = (5 = 1D)Winaa + ""de (see
Fig. 5).
Thus the area reachable by the interconnects is upper
bounded by: 9
((4-1) Winag + 1 22ode (11)
2 T

Using (10) and (11),
2
(8= 1) W+ 2

Z Anode (1 + Z'%=_

Ydy(dy, — 1) (d, —

DL)

node(l""w(dvydcag))'
Thus, Winae > 2025 (VI+ 0(duderg) — 1), This

completes our proof.

[1]
[2]

[3]

[4]

[6

=

[7

—

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

C. E. Shannon, “A mathematical theory of communication,” Bell Sys.
Tech. Jour., vol. 27, pp. 379-423, 623-656, Jul./Oct. 1948.

K. Ganesan, P. Grover, and J. M. Rabaey, “Interconnect power
consumption can be significant in simplistic decoders,” Feb. 2011,
in preparation.

T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 599-618, Feb. 2001.

Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “An
efficient 10GBASE-T ethernet LDPC decoder design with low error
floors,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 843
—-855, Apr. 2010.

X. Hu, E. Eleftheriou, D. Arnold, and A. Dholakia, “Efficient imple-
mentations of the sum-product algorithm for decoding LDPC codes,”
in IEEE Global Telecommunications Conference (Globecom), vol. 2,
2001, p. 1036.

C. Howland and A. Blanksby, “Parallel decoding architectures for
low density parity check codes,” in IEEE International Symposium
on Circuits and Systems (ISCAS), vol. 4, 2001, pp. 742-745.

E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High through-
put low-density parity-check decoder architectures,” in IEEE Global
Telecommunications Conference (Globecom), vol. 5, 2001, pp. 3019—
3024.

M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,”
IEEE Tran. Very Large Scale Integration Systems, vol. 11, pp. 976—
996, 2003.

J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” IPN Progress Report 42-154, JPL, 2005.

R. Gallager, “Low-Density Parity-Check Codes,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 1960.

F. Leighton, “A layout strategy for VLSI which is provably good,” in
Proceedings of the fourteenth annual ACM symposium on Theory of
computing. ACM, 1982, pp. 85-98.

S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bull. Amer. Math. Soc, vol. 43, pp. 439-561, 2006.

T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2007.

P. Grover, K. Woyach, and A. Sahai, “Towards a communication-
theoretic understanding of system-level power consumption,” Arxiv
preprint arXiv:1010.4855, submitted to IEEE Journal on Selected
Areas in Communication, 2010.

C. D. Thompson, “Area-time complexity for VLSI,” in Proceedings
of the 11th annual ACM symposium on Theory of computing (STOC).
New York, NY, USA: ACM, 1979, pp. 81-88.

——, “A complexity theory for VLSL,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, USA, 1980.

S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation
via spatial coupling: why convolutional LDPC ensembles perform so
well over the BEC,” in IEEE International Symposium on Information
Theory (ISIT), 2010, pp. 684—-688.

E. Kushilevitz and N. Nisan, “Communication complexity,” Advances
in Computers, vol. 44, pp. 331-360, 1997.

A. Sahai and P. Grover, “The price of certainty : “waterslide
curves” and the gap to capacity,” Dec. 2007. [Online]. Available:
http://arXiv.org/abs/0801.0352v1

F. Lazebnik, V. Ustimenko, and A. Woldar,
the order of cages,”
no. 2, 1997.

M. Lentmaier, D. V. Truhachev, K. S. Zigangirov, and D. J. Costello,
“An analysis of the block error probability performance of iterative
decoding,” IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3834-3855,
Nov. 2005.

A. Shokrollahi, “LDPC codes: An introduction,” Coding, cryptography
and combinatorics, p. 85, 2004.

J. Matousek, “On embedding expanders into L, spaces,” Israel
Journal of Mathematics, vol. 102, no. 1, pp. 189-197, 1997.

Z. Furedi, F. Lazebnik, A. Seress, V. Ustimenko, and A. Woldar,
“Graphs of prescribed girth and bi-degree,” Journal of Combinatorial
Theory, Series B, vol. 64, no. 2, pp. 228-239, 1995.

G. Exoo and R. Jajcay, “Dynamic cage survey,” Electron. J. Combin,
vol. 15, 2008.

“New upper bounds on
The electronic journal of combinatorics, vol. 4,

